

Welcome to the DDO!

• Historical property – keep it nice
• Fire exit – look for exit sign in hallway
• Washrooms:

• Men’s downstairs
• Women’s on second floor
• Can be treated as unisex. Call it out.

• Water has tested potable
• Help yourself to fridge in corner

• All volunteer – so keep it clean!

About ylab
• Maker space – all volunteer

–We host A.I.North on meetup.com
• Partnership with Richmond Hill

–We rent this space.
• Open Mon, Tue, Thu evenings for members

• Non-members: classes, open houses

• Laser cutters, 3D printers,
electronics, software, radio...

upcoming events
http://ylab.ca

Meetup: ylab maker space

Meetup: A.I. North

http://ylab.ca/

agenda
• Housekeeping – 8:30 bio break

• brief intro – python history/background

• hands-on intro

• 8:30 bio break/quick tour if interested

• code away – with our mentors’ help
• challenges – database, web

• suggest something you want to do

Talk about us
• Twitter: @ylab_maker #pythonconstricted

• Facebook

•

• Feedback most appreciated on meetup group

python
• Released 2000 by Guido van Rossum

• Open source

• Most searched language (more people learning)

• Now 3rd most popular (Tiobe Index, Sept 2018)

• Interpreted – but used in major applications

– Tools to get compiled speed when required

• Front end to math/science libraries and A.I. engines

• Major part of Linux/cloud administration tool development

• Breaks a lot of unwritten rules

Version 3.X
• Breaks some compatibility with 2.X

– Lost of complaining

– But changes make sense – improved consistency

– Transition not that bad (team doing it at our office)

– To help with transition, v. 2.7 works with 2.X and 3.X
code

– Multiple versions can live on your systems

• Continual advancements for threads, parallel
processing, async I/O

Suggested reading
• Eric S. Raymond (ESR) – Why Python?

– Why Python? https://www.linuxjournal.com/article/3882

– 2:1 reduction in code volume from C; comments on GO, C++ and OO
• http://esr.ibiblio.org/?p=7724

– And of course: http://www.catb.org/~esr/writings/cathedral-bazaar/

• PJ Plauger: Object oriented – or just encapsulate ?

– Column 21 in http://seriouscomputerist.atariverse.com/media/pdf/book/Programming
%20on%20Purpose.pdf

• Python tutorials and documentation phenomenal. Just search.

• Google what you’re trying to do

– 90% of it you will find on Stack Exchange

– And please read past the first entry.

https://www.linuxjournal.com/article/3882
http://esr.ibiblio.org/?p=7724

Which Python?

Which Python?
Most experimented language

● CPython is the default (written in C). The Reference.
● Jython: written in Java

● generates JVM code
● Can use Java libraries

● IronPython: Targets .NET; import C# libraries; written in C#
● But you can use Python.NET in Cpython

● Cython: generates C code for compiled libraries.
● Scientific/high performance computing

● PyPy: “If Python is so great, why is it written in C?”
● So they built a JIT compiler using Rpython (Restricted Python)

● Brython: Python in browser (translates to Javascript)
● And more at https://wiki.python.org/moin/PythonImplementations

Portability and Style...

• Works great between Linux and Windows and Mac and...

– Be sure to use language features for things like directory separators (/ vs \)

• Style: Just like Unix: not “can I do it?” but “which way will I do it?”

– Some claim it tries to force you a certain way... I disagree
• Things tend to be well thought out

• Things can be re-thought – Python 2.X to Python 3.X

– Old-guy procedural fine

– Object oriented fine

• Throws out a lot of old conventions

– “Interpreted is too slow”. We have massive speed and memory available
• Google, AutoCad and others beg to differ

• Only hard, core stuff needs speed (OS/hardware; OLTP; scientific routines)

• Flexibility and speed of development more important

– Nested structures simplified (you’ll see)

GUI Development

Local apps: lots of portable options
● TkInter (Tk/TCL) for simpler stuff
● WxPython for full native (Windows/Unix/Mac)

● ... and all the complexity that can imply
● Kivy – above, plus IOS, Android, Raspberry Pi

If not for phone app, use a web platform
● Many, many options.
● HTML tools offer greatest flexibility, least pain.

GUI development - Web

If not building IOS/Android apps, probably best bet
● Flexibility, variety, behaviour of web tools
● Micro frameworks: All in one including web server
● Full stack for Apache, nginx, etc
● Asynchronous frameworks

● Tens of thousands of non-blocking connections
● https://hackernoon.com/top-10-python-web-

frameworks-to-learn-in-2018-b2ebab969d1a

IDE for the class
• For today’s class: Python default IDLE editor

• After class... You have your choice of IDE for Python

– Supported in Eclipse, EMACS and others

– https://www.linuxlinks.com/9-best-free-python-integrated-
development-environments/

• Slack support for code snippets – structure and execution

• Pull in test code - emailed, or http://ylab.ca/python

• START IDLE NOW

– Editor

– Execution window

Basic data structures
NO DECLARATIONS REQUIRED. JUST DO IT.

• Tuple: immutable t=(1, “two”, 3)

• List: fungible l=[1,”two”,3]

• Dictionary: superset of JSON structures

• d={“first”: 1, “second”:2, “third”:3}

• len(t)

• Reference item: t[0] t[1:2] or [1:] or [-2] (from right)

• Tuples: + and * operators OK

• Each can be embedded in the other : t[0][1][3]

• Number: xint=1 xlong=1L xreal=1.0 xcomplex=1.0j

• String uses same reference []

• String split: slist = “one two three”.split(‘ ‘)

Code File Structure

Everything is a .py file – main or library
● No .h, no .lib
● # For comments
● Functions run when called
● Code outside of functions run when library called
● Convention: __main__, main()

● Standard part of .py programs
● To only run if this is the program run
● Awesome place to leave test code for the library

Typical program
#!/usr/bin/python

import sys #these are the libraries

def addtwo(a,b): #This is a function

 return(a+b) # indent mandatory. When indent

 # ends, function ends

def main(argv): # By convention only... main function

 x=addtwo(10,20)

 print(“x is:”, x)

if __name__ == “main”:

 print(‘This is the program that was run from command line’)

else:

 print(‘\n\n*** THIS MODULE IS AN IMPORT***\n\n’)

eval – the danger

Indent defines loops, functions

● No more BEGIN/END, { }, etc.
● Simple indent – you chose number of spaces

● Also tabs... but don’t. 4 spaces is default
● Set tab in editor to generate spaces, not \t

● Function:
●

Basic iteration
• for item in list_structure: #iterates through values in tuple, list, dictionary

• for x in range(5): # values 0 to 4

• for x in range (3,6): #values 3,4,5,6

• while <condition>:

•

• Both have break and continue

• Both have else (when loop exhausted or terminated – but not if break or
continue executed)

• If <condition>:

• elif <condition>: # elif and else at same indent level as if

• else <condition>:

Basic file operations

• f.open

• f.read -> the whole file, binary or not

• f.readline -> a single line

• f.readlines -> all lines into a list!

• f.seek: re-position the file pointer

• f.close: tidy up after yourself

• f.write: same deal...

• BIG FILE OR SMALL FILE?

– Efficiency differences... and we have lots of RAM.

– C really designed before RAM=64K, floppy =140K, hard disk = $$$$

Python Libraries

Library: Web Access

Library: Postgres SQL

PyCon Canada Nov 10-13

https://2018.pycon.ca/

Downtown near Eaton Centre

Conference Nov 10-11

Code Sprints Nov 12-13

Registration opened today!

Ask our volunteers about it

https://2018.pycon.ca/

	PowerPoint Presentation
	Welcome to the DDO!
	Slide 3
	upcoming events
	agenda
	twitter
	python
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

