


Welcome to the DDO!

• Historical property – keep it nice
• Fire exit – look for exit sign in hallway
• Washrooms:

• Men’s downstairs
• Women’s on second floor
• Can be treated as unisex. Call it out.

• Water has tested potable
• Help yourself to fridge in corner

• All volunteer – so keep it clean!



About ylab
• Maker space – all volunteer

–We host A.I.North on meetup.com
• Partnership with Richmond Hill

–We rent this space.
• Open Mon, Tue, Thu evenings for members

• Non-members: classes, open houses

• Laser cutters, 3D printers, 
electronics, software, radio...



upcoming events
http://ylab.ca

Meetup: ylab maker space

Meetup: A.I. North

http://ylab.ca/


agenda
• Housekeeping – 8:30 bio break

• brief intro – python history/background

• hands-on intro

• 8:30 bio break/quick tour if interested

• code away – with our mentors’ help
• challenges – database, web

• suggest something you want to do



Talk about us
• Twitter: @ylab_maker #pythonconstricted

• Facebook

•

• Feedback most appreciated on meetup group



python
• Released 2000 by Guido van Rossum

• Open source

• Most searched language (more people learning)

• Now 3rd most popular (Tiobe Index, Sept 2018)

• Interpreted – but used in major applications

– Tools to get compiled speed when required

• Front end to math/science libraries and A.I. engines

• Major part of Linux/cloud administration tool development

• Breaks a lot of unwritten rules



Version 3.X
• Breaks some compatibility with 2.X

– Lost of complaining

– But changes make sense – improved consistency

– Transition not that bad (team doing it at our office)

– To help with transition, v. 2.7 works with 2.X and 3.X 
code

– Multiple versions can live on your systems

• Continual advancements for threads, parallel 
processing, async I/O



Suggested reading
• Eric S. Raymond (ESR) – Why Python?

– Why Python? https://www.linuxjournal.com/article/3882

– 2:1 reduction in code volume from C; comments on GO, C++ and OO
• http://esr.ibiblio.org/?p=7724

– And of course: http://www.catb.org/~esr/writings/cathedral-bazaar/

• PJ Plauger: Object oriented – or just encapsulate ?

– Column 21 in http://seriouscomputerist.atariverse.com/media/pdf/book/Programming
%20on%20Purpose.pdf

• Python tutorials and documentation phenomenal. Just search.

• Google what you’re trying to do

– 90% of it you will find on Stack Exchange

– And please read past the first entry.

https://www.linuxjournal.com/article/3882
http://esr.ibiblio.org/?p=7724


Which Python?



Which Python?
Most experimented language

● CPython is the default (written in C). The Reference.
● Jython: written in Java

● generates JVM code
● Can use Java libraries

● IronPython: Targets .NET; import C# libraries; written in C#
● But you can use Python.NET in Cpython

● Cython: generates C code for compiled libraries.
● Scientific/high performance computing

● PyPy: “If Python is so great, why is it written in C?”
● So they built a JIT compiler using Rpython (Restricted Python)

● Brython: Python in browser (translates to Javascript)
● And more at https://wiki.python.org/moin/PythonImplementations



Portability and Style...

• Works great between Linux and Windows and Mac and...

– Be sure to use language features for things like directory separators (/ vs \)

• Style: Just like Unix: not “can I do it?” but “which way will I do it?”

– Some claim it tries to force you a certain way... I disagree
• Things tend to be well thought out

• Things can be re-thought – Python 2.X to Python 3.X 

– Old-guy procedural fine

– Object oriented fine

• Throws out a lot of old conventions

– “Interpreted is too slow”. We have massive speed and memory available
• Google, AutoCad and others beg to differ

• Only hard, core stuff needs speed (OS/hardware; OLTP; scientific routines)

• Flexibility and speed of development more important

– Nested structures simplified (you’ll see)



GUI Development

Local apps: lots of portable options
● TkInter (Tk/TCL) for simpler stuff
● WxPython for full native (Windows/Unix/Mac)

● ... and all the complexity that can imply
● Kivy – above, plus IOS, Android, Raspberry Pi

If not for phone app, use a web platform
● Many, many options. 
● HTML tools offer greatest flexibility, least pain.



GUI development - Web

If not building IOS/Android apps, probably best bet
● Flexibility, variety, behaviour of web tools
● Micro frameworks: All in one including web server
● Full stack for Apache, nginx, etc
● Asynchronous frameworks

● Tens of thousands of non-blocking connections
● https://hackernoon.com/top-10-python-web-

frameworks-to-learn-in-2018-b2ebab969d1a



IDE for the class
• For today’s class: Python default IDLE editor

• After class... You have your choice of IDE for Python

– Supported in Eclipse, EMACS and others

– https://www.linuxlinks.com/9-best-free-python-integrated-
development-environments/

• Slack support for code snippets – structure and execution

• Pull in test code - emailed, or http://ylab.ca/python

• START IDLE NOW

– Editor

– Execution window



Basic data structures
NO DECLARATIONS REQUIRED. JUST DO IT. 

• Tuple: immutable   t=(1, “two”, 3)

• List: fungible l=[1,”two”,3]

• Dictionary: superset of JSON structures

• d={“first”: 1, “second”:2, “third”:3}

• len(t)

• Reference item: t[0]  t[1:2] or [1:] or [-2] (from right)

• Tuples: + and * operators OK

• Each can be embedded in the other : t[0][1][3]

• Number: xint=1   xlong=1L  xreal=1.0 xcomplex=1.0j

• String uses same reference []

• String split: slist = “one two three”.split(‘ ‘)



Code File Structure

Everything is a .py file – main or library
● No .h, no .lib
● # For comments
● Functions run when called
● Code outside of functions run when library called
● Convention: __main__, main()

● Standard part of .py programs
● To only run if this is the program run
● Awesome place to leave test code for the library



Typical program
#!/usr/bin/python

import sys    #these are the libraries

def addtwo(a,b): #This is a function

    return(a+b)      # indent mandatory. When indent

                            # ends, function ends

def main(argv): # By convention only... main function

    x=addtwo(10,20)

    print(“x is:”, x)

if __name__ == “main”:

    print(‘This is the program that was run from command line’)

else:

    print(‘\n\n*** THIS MODULE IS AN IMPORT***\n\n’)



eval – the danger



Indent defines loops, functions

● No more BEGIN/END, { }, etc.
● Simple indent – you chose number of spaces

● Also tabs... but don’t. 4 spaces is default
● Set tab in editor to generate spaces, not \t

● Function:
●



Basic iteration
• for item in list_structure: #iterates through values in tuple, list, dictionary

• for x in range(5):  # values 0 to 4

• for x in range (3,6): #values 3,4,5,6

• while <condition>:

•

• Both have break and continue

• Both have else (when loop exhausted or terminated – but not if break or 
continue executed)

• If <condition>:

• elif <condition>:  # elif and else at same indent level as if

• else <condition>:



Basic file operations

• f.open

• f.read -> the whole file, binary or not

• f.readline -> a single line

• f.readlines -> all lines into a list!

• f.seek: re-position the file pointer

• f.close: tidy up after yourself

• f.write: same deal...

• BIG FILE OR SMALL FILE?

– Efficiency differences... and we have lots of RAM.

– C really designed before RAM=64K, floppy =140K, hard disk = $$$$



Python Libraries



Library: Web Access



Library: Postgres SQL



PyCon Canada Nov 10-13

https://2018.pycon.ca/

Downtown near Eaton Centre

Conference Nov 10-11

Code Sprints Nov 12-13

Registration opened today!

Ask our volunteers about it

https://2018.pycon.ca/
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